COMEDK UGET 2024

MATHEMATICS SYLLABUS CLASS XI (2022-23)

Unit-I: Sets and Functions

1. Sets

Sets and their representations, Empty set, Finite and Infinite sets, Equal sets, Subsets, Subsets of a set of real numbers especially intervals (with notations). Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement.

2. Relations & Functions

Ordered pairs. Cartesian product of sets. Number of elements in the Cartesian product of two finite sets. Cartesian product of the set of reals with itself (up to R x R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions

Positive and negative angles. Measuring angles in radians and in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity $\sin 2x + \cos 2x = 1$, for all x. Signs of trigonometric functions. Domain and range of trigonometric functions and their graphs. Expressing $\sin(x\pm y)$ and $\cos(x\pm y)$ in terms of $\sin x$, $\sin y$, $\cos x$ & $\cos y$ and their simple applications. Deducing identities like the following:

$$\begin{split} \tan(\mathbf{x} \pm \mathbf{y}) &= \frac{\tan \mathbf{x} \pm \tan \mathbf{y}}{1 \mp \tan \mathbf{x} \tan \mathbf{y}}, \cot(\mathbf{x} \pm \mathbf{y}) = \frac{\cot \mathbf{x} \cot \mathbf{y} \mp \mathbf{1}}{\cot \mathbf{y} \pm \cot \mathbf{x}} \\ \sin\alpha \pm \sin\beta &= 2\sin\frac{1}{2}(\alpha \pm \beta)\cos\frac{1}{2}(\alpha \mp \beta) \\ \cos\alpha + \cos\beta &= 2\cos\frac{1}{2}(\alpha + \beta)\cos\frac{1}{2}(\alpha - \beta) \\ \cos\alpha - \cos\beta &= -2\sin\frac{1}{2}(\alpha + \beta)\sin\frac{1}{2}(\alpha - \beta) \end{split}$$

Identities related to $\sin 2x$, $\cos 2x$, $\tan 2x$, $\sin 3x$, $\cos 3x$ and $\tan 3x$.

Unit-II: Algebra

1. Complex Numbers and Quadratic Equations

Need for complex numbers, especially $\sqrt{-1}$, to be motivated by inability to solve some of the quadratic equations. Algebraic properties of complex numbers. Argand plane

2. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line.

3. Permutations and Combinations

Fundamental principle of counting. Factorial *n*. (n!) Permutations and combinations, derivation of Formulae for nPr and nCr and their connections, simple applications.

4. Binomial Theorem

Historical perspective, statement and proof of the binomial theorem for positive integral indices. Pascal's triangle, simple applications.

5. Sequence and Series

Sequence and Series. Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of *n* terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M.

Unit-III: Coordinate Geometry

1. Straight Lines

Brief recall of two dimensional geometry from earlier classes. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point -slope form, slope-intercept form, two-point form, intercept form, Distance of a point from a line.

2. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points.

Unit-IV: Calculus

1. Limits and Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically. Intuitive idea of limit. Limits of polynomials and rational functions trigonometric, exponential and logarithmic functions. Definition of derivative relate it to scope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

Unit-V: Statistics and Probability

1. Statistics

Measures of Dispersion: Range, Mean deviation, variance and standard deviation of ungrouped/grouped data.

2. Probability

Events; occurrence of events, 'not', 'and' and 'or' events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with other theories of earlier classes. Probability of an event, probability of 'not', 'and' and 'or' events.

MATHEMATICS SYLLABUS

CLASS-XII (2023-24)

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, chain rule, derivative of inverse trigonometric functions, $like \sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$, derivative of implicit functions. Concept of exponential and logarithmic functions.

Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real life situations).

3. Integrals

Integration as inverse process of differentiation. Integration of a variety of functions by substitution,

$$\int \frac{dx}{x^2 \pm a^{2x}} \int \frac{dx}{\sqrt{x^2 \pm a^2}}, \int \frac{dx}{\sqrt{a^2 - x^2}}, \int \frac{dx}{ax^2 + bx + c}, \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

$$\int \frac{px + q}{ax^2 + bx + c} dx, \int \frac{px + q}{\sqrt{ax^2 + bx + c}} dx, \int \sqrt{a^2 \pm x^2} dx, \int \sqrt{x^2 - a^2} dx$$

$$\int \sqrt{ax^2 + bx + c} dx,$$

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential

$$\frac{dy}{dx}$$
 + py = q, where p and q are functions of x or constants.

$$\frac{dx}{dy}$$
 + px = q, where p and q are functions of y or constants.

equations of first order and first degree. Solutions of linear differential equation of the type:

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three - dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes' theorem, Random variable and its probability distribution, mean of random variable.